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Uintah Computational Framework
component based software system
- semi-automatic parallelism
- checkpoint/restart
- load-balancing / scheduling
- execution model
- task graph: computations expressed as
directed acyclic graphs of tasks
- load balancing is done by using a fast
space filling curve algorithm

This coupled multi-physics integrated simulation consists of three phases (all run within the UCF). First is the
simulation of the fire and calculates the time averaged rate of heat transfer to the container. Second is the heat
up of the container in which the heat is transferred from the fire, through the container, and into the explosive. The

final phase occurs when the explosive begins to convert from the solid to the gaseous phase. i
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This coupled multi-physics integrated simulation consists of three phases (all run within the UCF). First is the
simulation of the fire and calculates the time averaged rate of heat transfer to the container. Second is the heat
up of the container in which the heat is transferred from the fire, through the container, and into the explosive. The
final phase occurs when the explosive begins to convert from the solid to the gaseous phase. i
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This coupled multi-physics integrated simulation consists of three phases (all run within the UCF). First is the
simulation of the fire and calculates the time averaged rate of heat transfer to the container. Second is the heat
up of the container in which the heat is transferred from the fire, through the container, and into the explosive. The
final phase occurs when the explosive begins to convert from the solid to the gaseous phase. L
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Validation / Uncertainty Quantification
Integrating experiments & simulations

source of uncertainty?

validation: ym (X) — yexp < U
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Validation / Uncertainty Quantification
Integrating experiments & simulations

prediction: ym (x) o @|




/ A
- )¢

Error Budget: validation/uncertainty quantification g '\ 2 1 &

C-SAFE —%
(/M@

RSITY O

Vo (%) = Vo | s 1

Experimental Uncertainty (ye +- Ue)

Verification Error - Numerics (yv +- Uy)

Models / Model Parameters (Xm +- Um)

Scenario Parameters (Xs +- Us)
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Error Budget: validation/uncertainty quantification \
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Consistency”™

= maximum
value of Y
subject to
constraints

*see Feeley et al. J. Phys. Chem. A 2004, 108, 9573-9583
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e V/UQ algorithm:

— from prior knowledge identify estimate of
uncertainty bounds (hierarchical validation analysis)

— build surrogate model spanning uncertainty space
— estimate experimental uncertainty bounds

— identify consistent bounds (validation)

— predict new scenario (prediction)

— integration of scales & physics
— integration of simulation & experiments
— high performance computing
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Sim. & Exp. - V/IUQ: cost requirements

1. “All scientifically relevant data have an uncertainty.”

2. “Data without uncerta/nty cannot be relevant scientifically”
TR TR Manfred Drosg
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Sim. & Exp. - V/IUQ: cost requirements

1. “All scientifically relevant data have an uncertainty.”
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